Abstract

We propose a family of retrospective optimization (RO) algorithms for optimizing stochastic systems with both integer and continuous decision variables. The algorithms are continuous search procedures embedded in a RO framework using dynamic simplex interpolation (RODSI). By decreasing dimensions (corresponding to the continuous variables) of simplex, the retrospective solutions become closer to an optimizer of the objective function. We present convergence results of RODSI algorithms for stochastic “convex” systems. Numerical results show that a simple implementation of RODSI algorithms significantly outperforms some random search algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.