Abstract

To develop a method of retrospectively correcting for motion artifacts using a variable-density spiral (VDS) trajectory. Each VDS interleaf was designed to adequately sample the same center region of k-space. This central overlapping region can then be used to measure rigid body motion between the acquisition of each VDS interleaf. By applying appropriate phase shifts and rotations of the k-space data, rigid body motion artifacts can be removed, resulting in images with less motion corruption. Both phantom and volunteer experiments are shown, demonstrating the technique's ability to further reduce artifacts in images acquired with an already motion-resistant acquisition trajectory. Registration accuracy is highly dependent on the trajectory design parameters. This space was explored to find an optimal design of VDS trajectories for motion compensation. Using appropriately designed VDS trajectories, residual motion artifacts can be significantly reduced by retrospectively correcting for in-plane rigid body motion. An overlapping region of approximately 8% of the central region of k-space and approximately 70 interleaves were found to be near-optimal parameters for retrospective correction using VDS trajectories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.