Abstract

Temporary rivers become dependent on wastewater effluent for base flows, which severely impacts river ecosystems through exposure to elevated levels of nutrients, dissolved organic matter, and organic micropollutants. However, biodegradation processes occurring in these rivers can be enhanced by wastewater bacteria/biofilms. Here, we evaluated the attenuation of pharmaceuticals and their human metabolites performing retrospective analysis of 120 compounds (drugs, their metabolites and transformation products) in mesocosm channels loaded with wastewater effluents twice a week for a period of 31 days. Eighteen human metabolites and seven biotransformation products were identified with high level of confidence. Compounds were classified into five categories. Type-A: recalcitrant drugs and metabolites (diclofenac, carbamazepine and venlafaxine); Type-B: degradable drugs forming transformation products (TPs) (atenolol, sitagliptin, and valsartan); Type-C: drugs for which no known human metabolites or TPs were detected (atorvastatin, azithromycin, citalopram, clarithromycin, diltiazem, eprosartan, fluconazole, ketoprofen, lamotrigine, lormetazepam, metformin, telmisartan, and trimethoprim); Type-D: recalcitrant drug metabolites (4-hydroxy omeprazole sulfide, erythro/threo-hydrobupropion, and zolpidem carboxylic acid); Type-E: unstable metabolites whose parent drug was not detectable (norcocaine, benzolylecgonine, and erythromycin A enol ether). Noteworthy was the valsartan acid formation from valsartan with transient formation of TP-336.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.