Abstract

Pulmonary hypertension (PH) is diagnosed invasively by right heart catheterization (RHC), which determines patient’s mean and systolic pulmonary artery pressure (mPAP, sPAP) and pulmonary vascular resistance (PVR). This study sought to identify non-invasive echocardiography parameters useful for screening PH. Patients ([Formula: see text]; 19 normotensive; 17 pre-capillary PH; 48 post-capillary PH) who had undergone transthoracic Doppler echocardiography and RHC within 60 days of each other were identified. Tricuspid regurgitant (TR) jet velocities, velocity spectral densities, average flow rates, and Fourier transforms (FFT) of velocity waveforms were calculated via an in-house MATLAB code. Correlations were found between the FFT magnitude at 0 Hz and sPAP and mPAP for normotensive patients; between the MATLAB-calculated TR jet and sPAP and PVR for all PH patients; and between the sum of FFT magnitudes [Formula: see text][Formula: see text]Hz and mPAP, sPAP, and PVR for post-capillary PH patients. Statistical difference was found between the FFT magnitudes at 2 Hz of pre- and post-capillary PH patients ([Formula: see text]). These results suggest non-invasive parameters with clinical utility for estimating RHC measurements and discriminating between PH types, offering a path forward for less invasive and more accessible PH screening protocol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call