Abstract

PurposeTo develop and evaluate a rapid spherical navigator echo (SNAV) motion correction technique, then apply it for retrospective correction of brain images. MethodsThe pre-rotated, template matching SNAV method (preRot-SNAV) was developed in combination with a novel hybrid baseline strategy, which includes acquired and interpolated templates. Specifically, the SNAV templates are only rotated around X- and Y-axis; for each rotated SNAV, simulated baseline templates that mimic object rotation about the Z-axis were interpolated.The new method was first evaluated with phantom experiments. Then, a customized SNAV-interleaved gradient echo sequence was used to image three volunteers performing directed head motion. The SNAV motion measurements were used to retrospectively correct the brain images. Experiments were performed using a 3.0T whole-body MRI scanner and both single and 8-channel head coils. ResultsPhantom rotations and translations measured using the hybrid baselines agreed to within 0.9° and 1mm compared to those measured with the original preRot-SNAV method. Retrospective motion correction of in vivo images using the hybrid preRot-SNAV effectively corrected for head rotation up to 4° and 4mm. ConclusionsThe presented hybrid approach enables the acquisition of pre-rotated baseline templates in as little as 2.5s, and results in accurate measurement of rotations and translations. Retrospective 3D motion correction successfully reduced motion artifacts in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.