Abstract

AbstractNanoarchitectonics, a concept encompassing nanoscale microstructures and atomic arrangements in materials, enables the precise modification of materials for desired applications by controlling their physical and chemical properties, as well as surface charge or energy. Particularly in metal materials, where surface reactions play a critical role, nanoarchitecture becomes the most influential factor affecting activity, selectivity, and stability. Focusing on platinum‐group metals (PGMs) due to their inherently high efficiency in energy and environmental applications, this article provides a comprehensive review of synthetic methods for the morphological control of metal nanomaterials. The morphological control is classified into atomic arrangements in 0D, 1D, and 2D nanocrystals, as well as nanoporous structures, and the mechanisms of major reactions are covered in detail. Each chapter is supplemented with a table featuring several examples, facilitating the reader's understanding of the structural controls of PGMs. Finally, the article outlines future challenges in achieving novel metal nanoarchitecture. The hope is that this review provides valuable insights into the synthesis of PGM‐based nanomaterials and serves as a guide for designing and synthesizing innovative metal nanostructures for diverse applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.