Abstract

BackgroundVital injuries during midurethral sling surgery are avoided by maintaining constant trocar contact with bone, and yet this is challenging for a teaching surgeon to monitor during this blind procedure. We modified a retropubic trocar with a load cell to distinguish on-bone and off-bone movement and tested it on a midurethral sling surgery 3-dimensional surgery simulator. MethodsTwo experts and 3 novice surgeons performed retropubic trocar passage on the physical pelvic floor model using the modified trocar. Biofidelity was assessed comparing expert performance on a Thiel-embalmed cadaver and the physical model. The test-retest was assessed comparing performance on the physical pelvic model 2 weeks apart. The force variables were analyzed with paired and independent t tests. We performed post hoc analyses comparing the experts to novices on the physical model. ResultsThe root-mean-squared force was similar between the cadaver and model (24.3 vs 21.1 pounds, P = .62), suggesting biofidelity. Root-mean-squared force was also similar between the test and retest (14.0 vs 19.1 pounds, P =. 30). The expert surgeons exhibited a larger maximum force amplitude (51.2 vs 22.7 pounds, P = .03), shorter time to maximum force (2.7 vs 9.5 seconds, P = .03) and larger maximum rate of force development (171.5 vs 54.0 pounds/second, P = .01). ConclusionThis study suggested high test-retest reliability and adequate biofidelity of the modified trocar used on our midurethral sling surgery 3-dimensional surgery simulator. This innovative trocar can be used both in simulation and in the operating room to help the novice surgeons stay on the bone and to help the attending surgeon monitor safe surgery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call