Abstract

IFN-β is a unique member of type I IFN in humans and contains four positive regulatory domains (PRDs), I-II-III-IV, in its promoter, which are docking sites for transcription factors IFN regulatory factor (IRF) 3/7, NF-κB, IRF3/7, and activating transcription factor 2/Jun proto-oncogene, respectively. In chicken IFN-β and zebrafish IFNφ1 promoters, a conserved PRD or PRD-like sequences have been reported. In this study, a type I IFN gene, named as xl-IFN1 in the amphibian model Xenopus laevis, was found to contain similar PRD-like sites, IV-III/I-II, in its promoter, and these PRD-like sites were proved to be functionally responsive to activating transcription factor 2/Jun proto-oncogene, IRF3/IRF7, and p65, respectively. The xl-IFN1, as IFNφ1 in zebrafish, was transcribed into a long and a short transcript, with the long transcript containing all of the transcriptional elements, including PRD-like sites and TATA box in its proximal promoter. A retroposition model was then proposed to explain the transcriptional conservation of IFNφ1, xl-IFN1, and IFN-β in chicken and humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.