Abstract

Unlike all of the other retrons, the bacterial retron reverse transcriptase RrtE is capable of synthesizing small double-stranded DNA (sdsDNA) from template RNA. In this study, we analyzed the biosynthesis of the sdsDNA by RrtE in detail. We found out that the initiation of reverse transcription was dependent on a novel self-priming mechanism utilizing a free 3'OH of RNA that is reverse-transcribed into sdsDNA. The priming of the sdsDNA synthesis was not dependent on any particular nucleotide being used as a donor of 3'OH (unlike all of the other retrons, which prime from 2'OH of a particular guanosine) or any particular nucleotide being introduced into the sdsDNA first. Due to the relaxed demands for the initiation of reverse transcription, RrtE has the potential to generate dsDNA from different RNA transcripts in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.