Abstract

While there are several genome editing techniques available, few are suitable for dynamic and simultaneous mutagenesis of arbitrary targeted sequences in prokaryotes. Here, to address these limitations, we present a versatile and multiplex retron-mediated genome editing system (REGES). First, through systematic optimization of REGES, we achieve efficiency of ∼100%, 85±3%, 69±14%and 25±14% for single-, double-, triple- and quadruple-locus genome editing, respectively. In addition, we employ REGES to generate pooled and barcoded variant libraries with degenerate RBS sequences to fine-tune the expression level of endogenous and exogenous genes, such as transcriptional factors to improve ethanol tolerance and biotin biosynthesis. Finally, we demonstrate REGES-mediated continuous in vivo protein evolution, by combining retron, polymerase-mediated base editing and error-prone transcription. By these case studies, we demonstrate REGES as a powerful multiplex genome editing and continuous evolution tool with broad applications in synthetic biology and metabolic engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.