Abstract

Transforming growth factor β (TGF-β) is critical for the development and maintenance of epithelial structures. Because receptor localization and trafficking affect the cellular and organismal response to TGF-β, the present study was designed to address how such homeostatic control is regulated. To that end, we identify a new role for the mammalian retromer complex in maintaining basolateral plasma membrane expression of the type II TGF-β receptor (TβRII). Retromer and TβRII associate in the presence or absence of TGF-β ligand. After retromer knockdown, although TβRII internalization and trafficking to a Rab5-positive compartment occur as in wild-type cells, receptor recycling is inhibited. This results in TβRII mislocalization from the basolateral to both the basolateral and apical plasma membranes independent of Golgi transit and the Rab11-positive apical recycling endosome. The data support a model in which, after initial basolateral TβRII delivery, steady-state polarized TβRII expression is maintained by retromer/TβRII binding and delivery to the common recycling endosome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.