Abstract

In recent years, genomic, animal and cell biology studies have implicated deficiencies in retromer-mediated trafficking of proteins in an increasing number of neurodegenerative diseases including Alzheimer’s Disease (AD), Parkinson’s Disease (PD) and Frontotemporal Lobar Degener-ation (FTLD). The retromer complex, which is highly conserved across all eukaryotes, regulates the sorting of transmembrane proteins out of endo-somes to the cell surface or to the trans-Golgi network. Within retromer, cargo selection and binding are performed by a trimer of the Vps26, Vps29 and Vps35 proteins, named the “Cargo-Selective Complex (CSC)”. Sorting of cargo into tubules for distribution to the trans-Golgi network or the cell sur-face is achieved through the dimeric sorting nexin (SNX) component of retromer and accessory proteins such as the WASH complex which medi-ates the formation of discrete endosomal tubules enabling the sorting of cargo into distinct pathways through production of filamentous actin patch-es. In the present article, we review the molecular structure and function of the retromer and summarize the evidence linking retromer dysfunction to neurodegenerative disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.