Abstract

To determine if structurally intact, retrolaminar optic nerve (RON) axons are demyelinated in nonhuman primate (NHP) experimental glaucoma (EG). Unilateral EG NHPs (n = 3) were perfusion fixed, EG and control eyes were enucleated, and foveal Bruch's membrane opening (FoBMO) 30° sectoral axon counts were estimated. Optic nerve heads were trephined; serial vibratome sections (VSs) were imaged and colocalized to a fundus photograph establishing their FoBMO location. The peripheral neural canal region within n = 5 EG versus control eye VS comparisons was targeted for scanning block-face electron microscopic reconstruction (SBEMR) using micro-computed tomographic reconstructions (µCTRs) of each VS. Posterior laminar beams within each µCTR were segmented, allowing a best-fit posterior laminar surface (PLS) to be colocalized into its respective SBEMR. Within each SBEMR, up to 300 axons were randomly traced until they ended (nonintact) or left the block (intact). For each intact axon, myelin onset was identified and myelin onset distance (MOD) was measured relative to the PLS. For each EG versus control SBEMR comparison, survival analyses compared EG and control MOD. MOD calculations were successful in three EG and five control eye SBEMRs. Within each SBEMR comparison, EG versus control eye axon loss was -32.9%, -8.3%, and -15.2% (respectively), and MOD was increased in the EG versus control SBEMR (P < 0.0001 for each EG versus control SBEMR comparison). When data from all three EG eye SBEMRs were compared to all five control eye SBEMRs, MOD was increased within the EG eyes. Structurally intact, RON axons are demyelinated in NHP early to moderate EG. Studies to determine their functional status are indicated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.