Abstract

Hypersaline (Na–Ca–Cl) fluids are associated with late‐stage quartz veining and retrogression of garnet, kyanite and other high P–T phases in the vicinity of thrusts and major lithological boundaries in the Scandian nappes of the Troms‐Ofoten region, northern Norway. They record early Devonian fluid infiltration during rapid exhumation in the final stages of Caledonian orogenesis. The δ18O and δD characteristics of these late fluids provide compelling evidence for deep circulation of meteoric fluids. The sub‐greenschist to low greenschist facies retrogression (P=2±1 kbar; T =300–350 °C) suggests infiltration to depths of 7–9 km in a regime of supra‐hydrostatic fluid pressure. Peak metamorphic quartz veins and associated fluids have δD and δ18O characteristics consistent with a metamorphic origin (δD −47 to −75; δ18O+8.6 to +17.4). However, late quartz veins and associated fluids show a broad spread of δD from −42 to −148, interpreted in terms of meteoric fluid infiltration. Such negative δD values are only recorded in present‐day high‐latitude or high‐altitude settings, and since north Norway was in an equatorial setting (10° S) in the early Devonian, a high‐altitude origin is deduced. By calculation, and by comparison with modern examples, the early Devonian mountains of the north Norwegian Caledonides are interpreted to have had a topography in excess of 5 km. The deep circulation of surface waters is interpreted in terms of topographically driven flow, linked with a hydrothermal system induced by elevated geothermal gradients due to rapid uplift. Whilst the case for deep penetration of surface‐derived fluids has been promoted for Mesozoic and younger mountain belts, this study represents one of the first documented examples for a Palaeozoic orogenic belt. It suggests that many of the fundamental processes operating during the exhumation of mountain belts are similar irrespective of age.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.