Abstract

The zinc selenide autometallographic (ZnSe AMG) technique for tracing the retrograde axonal transport of zinc ions in zinc-enriched (ZEN) neurons was used to map the distribution of ZEN neuronal somata in rat spinal cord. After a local injection of sodium selenide into the dorsal or ventral horn, ZnSe AMG-labeled ZEN neurons appeared in Rexed’s laminae V, VII and X while laminae I and II were void. A few scattered ZEN somata were observed in the remaining laminae. The labeled neurons differed in shape and size, and the relatively high level of labeled somata around the injection site suggests that many ZEN neurons have relatively short axons or boutons en passage close to the neuronal origin. Ultrastructurally, the retrogradely transported zinc selenide clusters were found in the lysosomes of ZEN somata and proximal dendrites. Electron microscopic studies also revealed two different kinds of ZEN terminals: (1) terminals with flat synaptic vesicles making symmetric synaptic contacts; and (2) terminals with round vesicles making asymmetric synaptic contacts. The present study suggests the existence of propriospinal systems of ZEN neurons comprising both segmental and intersegmental ZEN connections and having either inhibitory or excitatory ZEN terminals. The ZEN neurons seem to form a vast network of terminals located primarily in the gray matter, but also contacting dendrites radiating into the white matter. Important functions of this rather massive system of ZEN terminals can not be deduced from our present knowledge, but the systems appear to be involved in both motor and sensory functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call