Abstract

GUN4 is a regulatory subunit of Mg-chelatase involved in the control of tetrapyrrole synthesis in plants and cyanobacteria. Here, we report the first characterization of a gun4 insertion mutant of the unicellular green alga Chlamydomonas reinhardtii. The mutant contains 50% of chlorophyll as compared to wild-type and accumulates ProtoIX. In contrast to the increase in LHC transcription, the accumulation of most LHC proteins is drastically diminished, implying posttranscriptional down-regulation in the absence of transcriptional coordination. We found that 803 genes change their expression level in gun4 as compared to wild-type, by RNA-Seq, and this wide-ranging effect on transcription is apparent under physiological conditions. Besides LHCs, we identified transcripts encoding enzymes of the tetrapyrrole pathway and factors involved in signal transduction, transcription, and chromatin remodeling. Moreover, we observe perturbations in electron transport with a strongly decreased PSI-to-PSII ratio. This is accompanied by an enhanced activity of the plastid terminal oxidase (PTOX) that could have a physiological role in decreasing photosystemII excitation pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.