Abstract

We have developed a method for labeling retinal ganglion cells in neonatal rats by retrograde transport of the fluorescent dye, True Blue (TB), injected into the optic chiasm. Following proteolytic dissociation of labeled retinas into single cells, the labeled cells could be enriched 50- to 100-fold by centrifugation in a 5%/10% metrizamide gradient. When plated in Ham's F-10 medium in the presence of fetal calf serum and chick optic tectum-conditioned medium, the labeled cells could be maintained in vitro up to 48 hr. In these cultures, the ganglion cells (GCS) constituted 50 to 70% of the total cell population. When GC-rich fractions or GC cultures were stained with a monoclonal antibody to Thy-1 antigen, greater than 90% of the TB-labeled cells were reactive. In order to localize voltage-sensitive sodium channels, GC-rich cultures were reacted with 125I-scorpion toxin. Analysis of the autoradiograms showed that the density of silver grains was about 10-fold higher on TB-labeled cells than on nonfluorescent cells, or in controls which contained excess of unlabeled toxin. When GC cultures were incubated with micromolar concentrations of putative GC transmitters, aspartate and glutamate, the amino acids were accumulated by 15 to 20% of labeled cells. Several lectin receptors were also localized on TB-labeled cells in situ. Whereas the lectins wheat germ agglutinin, concanavalin A, peanut agglutinin, Dolichos biflorus agglutinin, and Limulus polyphemus agglutinin bound to TB-labeled cells, others such as Ricinus communis agglutinin I, Ulex, and Lotus lectins showed no binding. The lectin binding was specific since preincubation with the appropriate hapten sugar blocked lectin binding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call