Abstract

The dyslipidemia associated with type 2 diabetes is a major risk factor for the development of atherosclerosis. Trans-intestinal cholesterol excretion (TICE) has recently been shown to contribute, together with the classical hepatobiliary route, to fecal cholesterol excretion and cholesterol homeostasis. The aim of this study was to develop an in vitro cell model to investigate enterocyte-related processes of TICE. Differentiated Caco-2/TC7 cells were grown on transwells and incubated basolaterally (blood side) with human plasma and apically (luminal side) with lipid micelles. Radioactive and fluorescent cholesterol tracers were used to investigate cholesterol uptake at the basolateral membrane, intracellular distribution and apical excretion. Our results show that cholesterol is taken up at the basolateral membrane, accumulates intracellularly as lipid droplets and undergoes a cholesterol acceptor-facilitated and progressive excretion through the apical membrane of enterocytes. The overall process is abolished at 4°C, suggesting a biologically active phenomenon. Moreover, this trans-enterocytic retrograde cholesterol transport displays some TICE features like modulation by PCSK9 and an ABCB1 inhibitor. Finally, we highlight the involvement of microtubules in the transport of plasma cholesterol from basolateral to apical pole of enterocytes. The human Caco-2/TC7 cell line appears a good in vitro model to investigate the enterocytic molecular mechanisms of TICE, which may help to identify intestinal molecular targets to enhance reverse cholesterol transport and fight against dyslipidemia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.