Abstract

Complete unilateral fimbria-fornix transections, including the overlying cingulate cortex, were administered to female rats. At time points from 1 day to 6 weeks, the septal-diagonal band region was examined using acetylcholinesterase histochemistry, Cresyl Violet cell staining, and choline acetyltransferase biochemistry. As early as 1 day following the transection a decrease in acetylcholinesterase positive cell body staining was observed in the medial septum; however, no loss of Nissl-stained neurons was measured in Cresyl Violet stained sections until 1 week after the lesion. Maximal loss of acetylcholinesterase-positive cells, as visualized after irreversible acetylcholinesterase inhibition, was measured at 1 week, and no further change was observed at time points up to 6 weeks after operation. The loss of acetyltransferase-positive cells was greatest in the medial septal area (−65%) and the vertical limb of the diagonal band (−55%). Little cell loss was measured in the horizontal limb of the diagonal band. This is consistent with the known projections of these cell bodies. Remaining acetylcholinesterase-positive cell bodies in the medial septum had shrunk by about 20% (measured as the diameter along the major axis). A marked neuronal cell loss (about 50%) was demonstrable in the medial septum and vertical limb of the diagonal band in the Cresyl Violet-stained sections, too. A pile-up of acetylcholinesterase-stained material was observed in the dorsal-lateral quadrant of the septal area just proximal to the lesion at 1 day following transection. This pile-up occurred in the medial septum and diagonal band area up to 1 week following the transection, and had nearly disappeared by 2 weeks post-transection. Choline acetyltransferase biochemical activity, measured in samples of whole septum, decreased significantly at 1 day but subsequently returned to control levels. By 2 weeks following transection, an increase in acetylcholinesterase-positive stained fibers was observed in the dorsal-lateral quadrant of the septum, ipsilateral to the lesion relative to the contralateral septum. This response, which was interpreted as sprouting from the lesioned axons proximal to the transection, probably accounted for the rise in choline acetyltransferase biochemical activity in the whole septum following the reduction on the first day.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call