Abstract

Retrograde blood flow from complex atheroma in the descending aorta (DAo) has only recently been described as a potential mechanism of stroke. However, prevalence of this mechanism in the general population and the exact factors influencing stroke risk are unclear. One hundred twenty-six consecutively recruited inhabitants of Freiburg, Germany, between 20 and 80years of age prospectively underwent 3-T MRI. Aortic plaque location and thickness were determined by 3D T1 MRI (1mm3). 4D flow MRI (spatial/temporal resolution 2mm3/20ms) and dedicated software were used to determine prevalence and extent of flow reversal and potential embolization from DAo plaques. Flow was correlated with baseline characteristics and echocardiographic and MRI parameters (aortic diameter, wall thickness, and pulse wave velocity). The maximum length of retrograde blood flow connecting the DAo with the left subclavian artery (LSA) increased from 16.1 ± 8.3mm in 20-29-year-old to 24.7 ± 11.7mm in 70-80-year-old subjects, correlated with age (r = 0.37; p < 0.001), and was lower in females (p = 0.003). Age was the only independent predictor of increased flow reversal. Complex DAo plaques ≥ 4-mm thickness were found in eight subjects (6.3%) and were connected with the LSA, left common carotid artery, and brachiocephalic trunk in 8 (100%), 1 (12.5%), and 0 (0%) cases, respectively. Retrograde blood flow from the DAo was very frequent. However, potential retrograde embolization was rare due to the low incidence of complex DAo plaques. The magnitude of flow reversal and prevalence of complex atheroma increased with age. Thus, older patients with aortic atherosclerosis are especially vulnerable to this stroke mechanism. • 4D flow MRI allows in vivo visualization and quantification of individual and three-dimensional blood flow patterns within the thoracic aorta including retrograde components. • This population-based study showed that blood flow reversal from the proximal descending aorta to the brain-supplying great arteries is very frequent and able to reach all brain territories. The extent of such flow reversal increases with age and with the extent of aortic atherosclerosis. • The combination of blood flow reversal with plaque rupture in the proximal descending aorta constitutes a potential stroke mechanism that should be considered in future trials and in the management of stroke patients in clinical routine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call