Abstract

AbstractThe inherent advancement of lithium‐ion batteries (LIBs) in electronic gadgets is expanding exponentially, and the ongoing surge of electric vehicles (EVS) in the near future will result in an unprecedented amount of lithium waste. Used cathode materials contain hazardous metal toxic, polymer binder, and electrolytes, posing a serious risk to the environment and public health. For socio‐environmental reasons, it is required to recover all valuable metals or to immediately relithiate the used cathode materials by adding suitable salts in the stoichiometric ratio. As the consumption of batteries increases over time in daily life, recycling LIBs will become more and more crucial. Compared to the traditional hydrometallurgical and pyrometallurgical routes, direct recycling technologies can regenerate electrodes without using an intensive energy or chemicals, which saves money and reduces secondary waste. As a result, the authors emphasise direct relithiation methods for spent cathode relithiation, such as hydrothermal, ionothermal, electrochemical, and molten salts. In‐depth analysis and discussion are also given to the aforementioned approaches. The deactivation, disintegration, and separation processes used in the physical processing of black mass and other constituents are discussed. We reviewed the obstacles, possible commercialization of technology, and recommendations to the reviewer for the developing ecologically friendly recycling technology in the near future toward the circular economy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.