Abstract

Clothing images are abundantly available from the Internet, especially from the e-commercial platform. Retrieving those images is of importance for commercial and social applications and has recently been received tremendous attention from communities, such as multimedia processing and computer vision. However, the large variations in clothing of their appearance and style, and even the large quantity of multiple categories and attributes make those problems challenging. Furthermore, for real world images their labels provided by shop retailers from webpages are largely erroneous or incomplete. And the imbalance among those image categories prevents the effective learning. To overcome those problems, in this paper, we adopt a multi-task deep learning framework to learn the representation. And we propose multi-weight deep convolutional neural networks for imbalance learning. The topology of this network contains two groups of layers, shared layers at the bottom and task dependent ones at the top. Furthermore, category-relevant parameters are incorporated to regularize the backward gradients for categories. Mathematical proof shows its relationship to regulating the learning rates. Experiments demonstrate that our proposed joint framework and multi-weight neural networks can effectively learn robust representations and achieve better performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.