Abstract

This paper addresses the problem of retrieving meaningful geometric information implied in image data. We outline a general algorithmic scheme to solve the problem in any geometric domain. The scheme, which depends on the domain, may lead to concrete algorithms when the domain is properly and formally specified. Taking plane Euclidean geometry $${\mathbb {E}}$$E as an example of the domain, we show how to formally specify $${\mathbb {E}}$$E and how to concretize the scheme to yield algorithms for the retrieval of meaningful geometric information in $${\mathbb {E}}$$E. For images of hand-drawn diagrams in $${\mathbb {E}}$$E, we present concrete algorithms to retrieve typical geometric objects and geometric relations, as well as their labels, and demonstrate the feasibility of our algorithms with experiments. An example is presented to illustrate how nontrivial geometric theorems can be generated from retrieved geometric objects and relations and thus how implied geometric knowledge may be discovered automatically from images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.