Abstract

A content-based image retrieval (CBIR) is a technique used to retrieve images from an image database. However, the CBIR process suffers from less accuracy to retrieve images from an extensive image database and ensure the privacy of images. This paper aims to address the issues of accuracy utilizing deep learning techniques as the CNN method. Also, it provides the necessary privacy for images using fully homomorphic encryption methods by Cheon, Kim, Kim, and Song (CKKS). To achieve these aims, a system has been proposed, namely RCNN_CKKS, that includes two parts. The first part (offline processing) extracts automated high-level features based on a flatting layer in a convolutional neural network (CNN) and then stores these features in a new dataset. In the second part (online processing), the client sends the encrypted image to the server, which depends on the CNN model trained to extract features of the sent image. Next, the extracted features are compared with the stored features using a Hamming distance method to retrieve all similar images. Finally, the server encrypts all retrieved images and sends them to the client. Deep-learning results on plain images were 97.94% for classification and 98.94% for retriever images. At the same time, the NIST test was used to check the security of CKKS when applied to Canadian Institute for Advanced Research (CIFAR-10) dataset. Through these results, researchers conclude that deep learning is an effective method for image retrieval and that a CKKS method is appropriate for image privacy protection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.