Abstract
The covariogramgK(x) of a convex bodyK⊆Edis the function which associates to eachx∈Edthe volume of the intersection ofKwithK+x, whereEddenotes the Euclideand-dimensional space. Matheron (1986) asked whethergKdeterminesK, up to translations and reflections in a point. Positive answers to Matheron's question have been obtained for large classes of planar convex bodies, while ford≥ 3 there are both positive and negative results. One of the purposes of this paper is to sharpen some of the known results on Matheron's conjecture indicating how much of the covariogram information is needed to get the uniqueness of determination. We indicate some subsets of the support of the covariogram, with arbitrarily small Lebesgue measure, such that the covariogram, restricted to those subsets, identifies certain geometric properties of the body. These results are more precise in the planar case, but some of them, both positive and negative ones, are proved for bodies of any dimension. Moreover some results regard most convex bodies, in the Baire category sense. Another purpose is to extend the class of convex bodies for which Matheron's conjecture is confirmed by including all planar convex bodies possessing two nondegenerate boundary arcs being reflections of each other.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.