Abstract
Surface-wave techniques are mainly used to retrieve 1D subsurface models. However, in 2D environments, the 1D approach usually neglects the presence of lateral variations and because the surface-wave path crosses different materials, the resulting model is a simplified or misleading description of the site. We tested a processing technique to retrieve 2D structures from surface-wave data acquired with a limited number of receivers. Our technique was based on a two-step process. First, we extracted several local dispersion curves along the survey line using a spatial windowing based on a set of Gaussian windows with different shapes; the window maxima span the survey line so that we were able to extract a dispersion curve from the seismic record for every window. This provided a set of local dispersion curves each of them referring to a different subsurface portion. This space varying spatial windowing provided a good compromise between wavenumber resolution and the lateral resolution of the obtained local dispersion curves. In the second step, we inverted the retrieved set of dispersion curves using a laterally constrained inversion scheme. We applied this procedure to the processing of synthetic and real data sets and the method proved to be successful in reconstructing even complex 2D structures in the subsurface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.