Abstract

Automated ICD coding is a multi-label prediction task aiming at assigning patient diagnoses with the most relevant subsets of disease codes. In the deep learning regime, recent works have suffered from large label set and heavy imbalance distribution. To mitigate the negative effect in such scenarios, we propose a retrieve and rerank framework that introduces the Contrastive Learning (CL) for label retrieval, allowing the model to make more accurate prediction from a simplified label space. Given the appealing discriminative power of CL, we adopt it as the training strategy to replace the standard cross-entropy objective and retrieve a small subset by taking the distance between clinical notes and ICD codes into account. After properly training, the retriever could implicitly capture the code co-occurrence, which makes up for the deficiency of cross-entropy assigning each label independently of the others. Further, we evolve a powerful model via a Transformer variant for refining and reranking the candidate set, which can extract semantically meaningful features from long clinical sequences. Applying our method on well-known models, experiments show that our framework provides more accurate results guaranteed by preselecting a small subset of candidates before fine-level reranking. Relying on the framework, our proposed model achieves 0.590 and 0.990 in terms of Micro-F1 and Micro-AUC on benchmark MIMIC-III.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call