Abstract

The radar vegetation index (RVI) has low sensitivity to changes in environmental conditions and has the potential as a tool to monitor vegetation growth. In this letter, we expand on previous research by investigating the radar response over a wheat canopy. RVI was computed using observations made with a ground-based multifrequency polarimetric scatterometer system over an entire wheat growth cycle. We analyzed the temporal variations of backscattering coefficients for L-, C-, and X-bands; RVI; vegetation water content (VWC); and fresh weight. We found that the L-band RVI was highly correlated with both VWC (r = 0.98) and fresh weight (r = 0.98). Based upon these analyses, linear equations were developed for estimation of VWC (root-mean-square error (RMSE = 0.126 kg m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> )) and fresh weight (RMSE = 0.12 kg m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> ). In addition, the results of the wheat study were combined with previous investigations with other crops (e.g., rice and soybean). We found that a single linear relationship between L-band RVI and VWC can be used for all crop types (RMSE = 0.47 kg m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> ). These results clearly demonstrate the potential of RVI as a robust method for characterizing vegetation canopies. VWC is a key input requirement for retrieving soil moisture from microwave remote sensing observations. The results of this investigation will be useful for the Soil Moisture Active and Passive mission (2014), which is designed to measure global soil moisture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.