Abstract
Lidar backscatter signatures from model water clouds are calculated for CO(2) lidar wavelengths (9.2-10.8 microm) using Mie theory. The lidar isotropic mass backscatter coefficient is found to be quite variable both with cloud model and with wavelength, with values ranging from ~90 to 15 g(-1) cm(2) at 9.2-microm wavelength and from 25 to 5 g(-1) cm(2) at 11 microm, there being a general decrease in values with increasing wavelength. The cloud isotropic backscatter-to-extinction ratio similarly varies with both wavelength and cloud model between extreme values of 0.14 and 0.008. It is found that the cloud mass extinction coefficient has a value at any wavelength which is independent of cloud model droplet size distribution to within ~10% accuracy, in agreement with other studies. The value of this quantity varies from 1929 g(-1) cm(2) at 9.2 microm to 1258 g(-1) cm(2) at 11.0 microm. If the isotropic volume backscatter coefficient and the isotropic backscatter-to-extinction ratio are measured by lidar, then using the above characteristics of mass extinction coefficient the cloud liquid water content can be measured at any wavelength to an accuracy of ~20% when the cloud optical depth is between 0 and 0.5, with an increasing error with increasing cloud optical depth. Using the relationship between cloud droplet mode radius and backscatter-to-extinction ratio, the mode radius can be determined to ~10% accuracy. Multiple scattering in the backscattered beam for the case of absorbing water clouds at CO(2) wavelengths is also considered. The cloud depth to which accurate information can be retrieved in typical water clouds varies from ~80 to 250 m depending on the wavelength and the cloud model, although some information is available to depths of 500 m in some clouds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.