Abstract

Abstract The hydrometeor content and thermal fields in a thunderstorm are estimated from a three-dimensional kinematic cloud model employing Doppler wind fields and parameterized microphysical processes. The sensitivity of the cloud model calculations to variation of the microphysical parameterization is determined by comparing results of model runs with modified parameterizations to the results of a standard or control model run with complete warm/cold cloud microphysics. Changes of certain calculated or specified model parameters and alternate exclusion or inclusion of the ice phase modulate extreme values of precipitation content. Differences between the model solutions, which result from altering the balance between predominant precipitation processes, are traced through analysis of model output to some major change of the precipitation accretion mechanism. The largest differences in maximum retrieved graupel/hail content and radar reflectivity associate with the parameterizations which fix the graupe...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.