Abstract

Inversion is a fundamental step in magnetotelluric (MT) data routine analysis to retrieve a subsurface geoelectrical model that can be used to inform geological interpretations. To reduce the effect of non-uniqueness and local minimum trapping problems and improve calculation speeds, a data-driven mathematical method with a deep neural network was developed to estimate the subsurface resistivity. In this study, a deep learning (DL) inversion technique using a revised multi-head convolutional neural network (CNN) architecture was investigated for MT data analysis. We created synthetic datasets consisting of 100,000 random samples of resistivity layers to train the network’s parameters. The trained model was validated with independent noised datasets, and the predicted results displayed reasonable accuracy and reliability, which demonstrates the potential application of DL inversion for real-world MT data. The trained model was used to analyze MT data collected in the southwestern Athabasca Basin, Canada. The calculated results from the DL method displayed a detailed subsurface resistivity distribution compared to traditional iterative inversion. Since this approach can predict a resistivity model without multiple forward modeling operations after the CNN model is created, this framework is suitable to speed up the computation of multidimensional MT inversion for subsurface resistivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call