Abstract

Snow on sea ice is a sensitive indicator of climate change because it plays an important role regulating surface and near surface air temperatures. Given its high albedo and low thermal conductivity, snow cover is considered a key reason for amplified warming in polar regions. This study focuses on retrieving snow depth on sea ice from brightness temperatures recorded by the Microwave Radiation Imager (MWRI) on board the FengYun (FY)-3B satellite. After cross calibration with the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) Level 2A data from January 1 to May 31, 2011, MWRI brightness temperatures were used to calculate sea ice concentrations based on the Arctic Radiation and Turbulence Interaction Study Sea Ice (ASI) algorithm. Snow depths were derived according to the proportional relationship between snow depth and surface scattering at 18.7 and 36.5 GHz. To eliminate the influence of uncertainties in snow grain sizes and sporadic weather effects, seven-day averaged snow depths were calculated. These results were compared with snow depths from two external data sets, the IceBridge ICDIS4 and AMSR-E Level 3 Sea Ice products. The bias and standard deviation of the differences between the MWRI snow depth and IceBridge data were respectively 1.6 and 3.2 cm for a total of 52 comparisons. Differences between MWRI snow depths and AMSR-E Level 3 products showed biases ranging between −1.01 and −0.58 cm, standard deviations from 3.63 to 4.23 cm, and correlation coefficients from 0.61 to 0.79 for the different months.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.