Abstract

Remote estimation of inherent optical properties (IOPs) for water bodies cannot only provide indicators of water quality, but also be used in the study on biological and biogeochemical processes of waters. The quasi-analytical algorithm (QAA) is a simple and effective method to retrieve IOPs from remote-sensing reflectance ( <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">R</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">rs</sub> ). The QAA has been widely validated and applied in oceans, but its application in inland waters is far less extensive. In this paper, the QAA was enhanced to retrieve IOPs for turbid inland waters based on the bandwidths of Medium Resolution Imaging Spectrometer (MERIS). The enhancement was achieved by proposing a semi-analytical model to estimate the spectral slope of particle backscattering, as well as a novel estimation model for phytoplankton absorption coefficient at 443 nm. Two data sets (i.e., noise-free synthetic data and in-situ data) were collected to assess the performance of the enhanced algorithm. Results show that the algorithm yields almost error-free estimations for total absorption and backscattering coefficients and estimations for phytoplankton absorption at 443 nm with acceptable accuracy in the case of synthetic data set. For the in-situ data set, the algorithm retrieves the total absorption coefficients (ranging 0.337-8.331 m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> ) with root-mean-square-error in log scale (RMSE) and bias in log scale lower than 0.130 and 0.094, respectively, and phytoplankton absorption at 443 nm (ranging 0.378-4.669 m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> ) with RMSE and bias in log scale of 0.151 and 0.096, respectively. These results indicate the potential of the enhanced QAA to accurately retrieve the IOPs from MERIS satellite observations for inland waters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.