Abstract

A prototype upward-scanning, under-canopy, near-infrared light detection and ranging (lidar) system, the Echidna® validation instrument (EVI), built by CSIRO Australia, retrieves forest stand structural parameters, including mean diameter at breast height (DBH), stand height, distance to tree, stem count density (stems/area), leaf-area index (LAI), and stand foliage profile (LAI with height) with very good accuracy in early trials. We validated retrievals with ground-truth data collected from two sites near Tumbarumba, New South Wales, Australia. In a ponderosa pine plantation, LAI values of 1.84 and 2.18 retrieved by two different methods using a single EVI scan bracketed a value of 1.98 estimated by allometric equations. In a natural, but managed, Eucalypus stand, eight scans provided mean LAI values of 2.28–2.47, depending on the method, which compare favorably with a value of 2.4 from hemispherical photography. The retrieved foliage profile clearly showed two canopy layers. A “find-trunks” algorithm processed the EVI scans at both sites to identify stems, determine their diameters, and measure their distances from the scan center. Distances were retrieved very accurately (r2 = 0.99). The accuracy of EVI diameter retrieval decreased somewhat with distance as a function of angular resolution of the instrument but remained unbiased. We estimated stand basal area, mean diameter, and stem count density using the Relaskop method of variable radius plot sampling and found agreement with manual Relaskop values within about 2% after correcting for the obscuring of far trunks by near trunks (occlusion). These early trials prove the potential of under-canopy, upward-scanning lidar to retrieve forest structural parameters quickly and accurately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.