Abstract
Abstract. Understanding the role atmospheric aerosols play in the Earth–atmosphere system is limited by uncertainties in the knowledge of their distribution, composition and sources. In this paper, we use the GEOS-Chem based inverse modelling framework for retrieving desert dust (DD), black carbon (BC) and organic carbon (OC) aerosol emissions simultaneously. Aerosol optical depth (AOD) and aerosol absorption optical depth (AAOD) retrieved from the multi-angular and polarimetric POLDER/PARASOL measurements generated by the GRASP algorithm (hereafter PARASOL/GRASP) have been assimilated. First, the inversion framework is validated in a series of numerical tests conducted with synthetic PARASOL-like data. These tests show that the framework allows for retrieval of the distribution and strength of aerosol emissions. The uncertainty of retrieved daily emissions in error free conditions is below 25.8 % for DD, 5.9 % for BC and 26.9 % for OC. In addition, the BC emission retrieval is sensitive to BC refractive index, which could produce an additional factor of 1.8 differences for total BC emissions. The approach is then applied to 1 year (December 2007 to November 2008) of data over the African and Arabian Peninsula region using PARASOL/GRASP spectral AOD and AAOD at six wavelengths (443, 490, 565, 670, 865 and 1020 nm). Analysis of the resulting retrieved emissions indicates 1.8 times overestimation of the prior DD online mobilization and entrainment model. For total BC and OC, the retrieved emissions show a significant increase of 209.9 %–271.8 % in comparison to the prior carbonaceous aerosol emissions. The model posterior simulation with retrieved emissions shows good agreement with both the AOD and AAOD PARASOL/GRASP products used in the inversion. The fidelity of the results is evaluated by comparison of posterior simulations with measurements from AERONET that are completely independent measurements and more temporally frequent than PARASOL observations. To further test the robustness of our posterior emissions constrained using PARASOL/GRASP, the posterior emissions are implemented in the GEOS-5/GOCART model and the consistency of simulated AOD and AAOD with other independent measurements (MODIS and OMI) demonstrates promise in applying this database for modelling studies.
Highlights
Atmospheric aerosols have a variety of sources and complex chemical compositions
One of the important indicators of our inversion performance is the fitting of PARASOL/GRASP spectral Aerosol optical depth (AOD) and aerosol absorption optical depth (AAOD)
We considered two cases of black carbon (BC) aerosol refractive index to perform the retrieval (Case 1: m = 1.75– 0.45i; Case 2: m = 1.95–0.79i) since the retrieved total BC emissions are very sensitive to the BC refractive index
Summary
Atmospheric aerosols have a variety of sources and complex chemical compositions. Desert dust (DD) aerosol is one of the most abundant types of aerosol by mass, while the range of global dust emission estimates spans a factor of about 5 (Huneeus et al, 2011). C. Chen et al.: Retrieval of aerosol emissions from PARASOL/GRASP al., 2004) translates into a significantly high uncertainty in evaluating their climate effects (Textor et al, 2006). The Intergovernmental Panel on Climate Change (IPCC) estimates the global mean direct shortwave radiative forcing due to primary carbonaceous aerosol to be − 0.1 W m−2 in their 2001 report, in 2007 they raise it to 0.18 W m−2 and in the latest report (IPCC, 2013) the value comes to 0.31 W m−2 (Myhre et al, 2013). Desert dust and carbonaceous aerosols can have deleterious impacts on regional air quality and public health (Chin et al, 2007; Monks et al, 2009; Li et al, 2013). Observations are needed to accurately evaluate their emissions in order to better understand the role that atmospheric aerosols play in the Earth– atmosphere system (Bellouin et al, 2005)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.