Abstract
Soil moisture is a key parameter in water balance, and it serves as the core and link in atmosphere–vegetation–soil–groundwater systems. Soil moisture directly affects the accuracy of the simulation and prediction conducted by hydrological and atmospheric models. This article aims to develop a new model to retrieve the daily evolution of soil moisture with time series of land surface temperature (LST) and net surface shortwave radiation (NSSR). First, for the time series of soil moisture, LST and NSSR daytime data were simulated by the common land model (CoLM) with different soil types in bare soil areas. Based on these data, the variations between soil moisture and LST-NSSR during the daytime with different soil types were analysed, and a plane function was used to fit the daily evolution of soil moisture and the time series of LST and NSSR data. Further study proved that the coefficients of the soil moisture retrieval model are not sensitive to soil type. Then, a relationship model between the daily evolution of soil moisture and the time series of LST-NSSR was developed and validated using the data simulated by CoLM with different soil types and different atmospheric conditions. To demonstrate the feasibility of the soil moisture retrieval method proposed in this study, it was applied to the African continent with data from the METEOSAT Second Generation Spinning Enhanced Visible and Infrared Imager (MSG–SEVIRI) geostationary satellite. The results show that the variation of soil moisture content can be quantitatively estimated directly by the method at the regional scale with some reasonable assumptions. This study can provide a new method for monitoring the variation of soil moisture, and it also indicates a new direction for deriving the daily variation of soil moisture using the information from the time series of the land surface variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.