Abstract

Content-based image retrieval (CBIR) techniques have currently gained increasing popularity in the medical field because they can use numerous and valuable archived images to support clinical decisions. In this paper, we concentrate on developing a CBIR system for retrieving brain tumors in T1-weighted contrast-enhanced MRI images. Specifically, when the user roughly outlines the tumor region of a query image, brain tumor images in the database of the same pathological type are expected to be returned. We propose a novel feature extraction framework to improve the retrieval performance. The proposed framework consists of three steps. First, we augment the tumor region and use the augmented tumor region as the region of interest to incorporate informative contextual information. Second, the augmented tumor region is split into subregions by an adaptive spatial division method based on intensity orders; within each subregion, we extract raw image patches as local features. Third, we apply the Fisher kernel framework to aggregate the local features of each subregion into a respective single vector representation and concatenate these per-subregion vector representations to obtain an image-level signature. After feature extraction, a closed-form metric learning algorithm is applied to measure the similarity between the query image and database images. Extensive experiments are conducted on a large dataset of 3604 images with three types of brain tumors, namely, meningiomas, gliomas, and pituitary tumors. The mean average precision can reach 94.68%. Experimental results demonstrate the power of the proposed algorithm against some related state-of-the-art methods on the same dataset.

Highlights

  • In modern hospitals, a large number of medical images are produced, diagnosed, and archived in picture archiving and communication systems every day

  • We focus on developing a Content-based image retrieval (CBIR) system for retrieving MRI images of brain tumors to assist radiologists in the diagnosis of brain tumors

  • We investigate the power of the Fisher vector (FV) to retrieve brain tumor images of the same pathological type and compare it with BoW

Read more

Summary

Introduction

A large number of medical images are produced, diagnosed, and archived in picture archiving and communication systems every day. The use of stored visual data for clinical decision support, radiologist training, and research in medical schools would be of great clinical benefit. These demands have made CBIR an active research area in medicine. Compared with text-based image retrieval, the CBIR can search query images from a database. Retrieval of Brain Tumors had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.