Abstract

Forest inventories provide predictions of stand means on a routine basis from models with auxiliary variables from remote sensing as predictors and response variables from field data. Many forest inventory sampling designs do not afford a direct estimation of the among-stand variance. As consequence, the confidence interval for a model-based prediction of a stand mean is typically too narrow. We propose a new method to compute (from empirical regression residuals) an among-stand variance under sample designs that stratify sample selections by an auxiliary variable, but otherwise do not allow a direct estimation of this variance. We test the method in simulated sampling from a complex artificial population with an age class structure. Two sampling designs are used (one-per-stratum, and quasi systematic), neither recognize stands. Among-stand estimates of variance obtained with the proposed method underestimated the actual variance by 30-50%, yet 95% confidence intervals for a stand mean achieved a coverage that was either slightly better or at par with the coverage achieved with empirical linear best unbiased estimates obtained under less efficient two-stage designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.