Abstract

It is well known that a sparsely coded network in which the activity level is extremely low has intriguing equilibrium properties. In the present work, we study the dynamical properties of a neural network designed to store sparsely coded sequential patterns rather than static ones. Applying the theory of statistical neurodynamics, we derive the dynamical equations governing the retrieval process which are described by some macroscopic order parameters such as the overlap. It is found that our theory provides good predictions for the storage capacity and the basin of attraction obtained through numerical simulations. The results indicate that the nature of the basin of attraction depends on the methods of activity control employed. Furthermore, it is found that robustness against random synaptic dilution slightly deteriorates with the degree of sparseness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.