Abstract
BackgroundPostretrieval extinction attenuates the pathological memory associated with psychiatric states such as drug addiction in both humans and rodents. The extinction of a learned response requires gene transcription and protein synthesis after memory retrieval in a time-dependent manner, yet the precise physiological basis after retrieval to allow extinction to neutralize a learned behavior is not fully understood. MethodsIn a cocaine conditioned place preference paradigm, we used a ribosomal tagging strategy to measure the translational state of hippocampal pyramidal neurons after the retrieval of cocaine-associated context memory. Using approaches of electrophysiology, neuronal tracing, and a doxycycline-dependent robust activity marking system, we investigated the cellular and molecular basis of retrieval-induced plasticity that facilitated the extinction. ResultsBioinformatics analysis discovered the specific translational regulation of signaling pathways by retrieval and revealed Nptx2 as the hub gene. Manipulating Nptx2 in dorsal hippocampus bidirectionally regulated the extinction of cocaine-associated context memory as well as the retrieval-driven synaptic remodeling. The pentraxin (PTX) domain of NPTX2 recruited GluA1-AMPA receptors and enhanced the extinction and excitatory synaptic transmission that was prevented by overexpressing carboxyl cytoplasmic tail of GluA1. Furthermore, Nptx2 in retrieval-activated neurons was required for the extinction. ConclusionsThe retrieval-driven upregulation of Nptx2 contributes to the synaptic remodeling in dorsal hippocampus and facilitates the extinction of cocaine-associated context memory, indicating a potential target for the treatment of cue-induced cocaine seeking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.