Abstract
This paper investigates how Linked Open Data (LOD) can be used for recommendations and information retrieval within digital libraries. While numerous studies on both research paper recommender systems and Linked Data-enabled recommender systems have been conducted, no previous attempt has been undertaken to explore opportunities of LOD in the context of search and discovery interfaces. We identify central advantages of Linked Open Data with regard to scientific search and propose two novel recommendation strategies, namely flexible similarity detection and constraint-based recommendations. These strategies take advantage of key characteristics of data that adheres to LOD principles. The viability of Linked Data recommendations was extensively evaluated within the scope of a web-based user experiment in the domain of economics. Findings indicate that the proposed methods are well suited to enhance established search functionalities and are thus offering novel ways of resource access. In addition to that, RDF triples from LOD repositories can complement local bibliographic records that are sparse or of poor quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.