Abstract

Wind vector fields derived from synthetic aperture radar (SAR) sensors show variations at smaller scales than most other globally available surface wind sources. However, few studies have been devoted to the investigation of the accuracy of SAR-derived wind fields at different scales and how they compare with other wind data. In order to investigate these issues, an algorithm for the retrieval of SAR-derived wind vectors has been developed, and a quality assessment between the retrievals and in situ, scatterometer, and numerical weather model (NWM) wind data has been performed. The implemented wind retrieval algorithm detects streak features in the SAR image to estimate wind directions and inverts wind speeds using CMOD-IFR2, CMOD5, or CMOD5.N geophysical model functions. In addition, a regularization method for filtering outliers in the wind direction retrievals is used. Retrievals compared with in situ data indicated better performance at offshore locations for wind speed inversions with CMOD5.N. The bias and standard deviation for offshore regularized wind directions and CMOD5.N speeds are 9° and 25° and -0.1 and 1.4 m/s, respectively. The comparison with the scatterometer and NWM wind data has been performed for retrievals at 5-, 10-, and 20-km resolution. The results indicate a better agreement of the coarser retrievals with the reference data. Nevertheless, mapping of smaller scale features requires wind directions from the SAR image itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.