Abstract
With the introduction of the Attune Knee System (DePuy) in March 2013, a new polyethylene formulation incorporating anti-oxidants was used. Although several in vitro studies have demonstrated the positive effects of antioxidants on UHMWPE, no retrieval study has looked at polyethylene damage of this system yet. It was the aim of this study to investigate the in vivo performance of this new design, by comparing it with its predecessors in retrieval analysis. 24PFC (18 fixed bearing and 6 rotating platform designs) and 17 Attune (8 fixed bearing and 9 rotating platform designs) implants were retrieved. For retrieval analysis, a macroscopic analysis of polyethylene components, using a peer-reviewed damage grading method was used. Medio-lateral polyethylene thickness difference was measured with a peer-reviewed micro-CT based method. The roughness of metal components was measured. All findings were compared between the two designs. Attune tibial inserts with fixed bearings showed significantly higher hood scores on the backside surface when compared with their PFC counterparts (p = 0.01), no other significant differences were found in the polyethylene damage of all the other surfaces analysed, in the surface roughness of metal components and in medio-lateral linear deformations. A significant difference between PFC and Attune fixed bearing designs was found in terms of backside surface damage: multiple changes in material and design features could lead to a potential decrease of implant performance. Results from the present study may help to understand how the new Attune Knee System performs in vivo, impacting over 600,000 patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.