Abstract

The Qinghai-Tibet Plateau plays a very important role in studying severe weather in China and around the globe because of its unique characteristics. Moreover, the surface emissivities of the Qinghai-Tibet Plateau are also important for retrieving surface and atmospheric parameters. In the current study, a retrieval algorithm was developed to retrieve the surface emissivities of the Qinghai-Tibet Plateau. The developed algorithm was derived from the radiative transfer model and was first validated using simulated data from a one-dimensional microwave simulator. The simulated results show good precision. Then, the surface emissivities of the Qinghai-Tibet Plateau were retrieved using brightness temperatures from the advanced microwave-scanning radiometer and atmospheric profile data from the moderate resolution imaging spectroradiometer. Finally, the features of the time and space distribution of the retrieved results were analyzed. In terms of spatial characteristics, a spatial distribution consistency was found between the retrieved results and surface coverage types of the Qinghai-Tibet Plateau. In terms of time characteristics, the changes in emissivity, which were within 0.01 for every day, were not evident within a one-month time scale. In addition, surface emissivities are sensitive to rainfall. The reasonability of the retrieved results indicates that the algorithm is feasible. A time-series surface emissivity database on the Qinghai-Tibet Plateau can be built using the developed algorithm, and then other surface or atmospheric parameters would have high retrieval precision to support related geological research on the Qinghai-Tibet Plateau.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.