Abstract

The RETRAN model of Lungmen ABWR was used to simulate one feedwater pump trip (FWPT) transient of the Lungmen start-up test program. The purpose of this test is to verify the capability of one surviving Turbine Driven Reactor Feedwater Pump (TDRFP) plus a Motor Driven Feedwater Pump (MDRFP) to continue operating the reactor stably following the incident. There are three major control systems implanted in Lungmen RETRAN model (LRM), which include Recirculation Flow Control System (RFCS), Steam Bypass and Pressure Control System (SBPCS), and Feedwater Control System (FWCS). The reactor water level margin with respect to the low level scram setpoint in the transient is monitored to confirm whether the acceptance criteria has been satisfied, which depends on the responses of the control systems to the FWPT transient. The analysis result of base case at 100% rated power/100% rated core flow with automatic start of MDRFP demonstrates that the acceptance criteria are met, which shows that the water level still sustains ample margin of 30 cm above the low level setpoint, and the reactor does not scram. To get more insight into the function of MDRFP, a set of sensitivity studies with the assumption of unavailable MDRFP, and with a different initial condition which extended to the maximum allowable core flow of 111% rated at rated power, was conducted to verify the superior capability of power coastdown due to the RIPs runback logic under the lowest load line, and also the delay time of the Reactor Internal Pumps (RIPs). Finally, it is concluded that FWPT transient without start of MDRFP eventually actuates the low level scram signal, even with the lowest load line at rated power as the initial condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call