Abstract

In keystroke dynamics-based authentication, novelty detection methods are used since only the valid user's patterns are available when a classifier is first constructed. After a while, however, impostors' keystroke patterns become available from failed login attempts. We propose to employ the retraining framework where a novelty detector is retrained with the impostor patterns to enhance authentication accuracy. In this paper, learning vector quantization for novelty detection and support vector data description are retrained with the impostor patterns. Experimental results show that retraining improves the authentication performance and that learning vector quantization for novelty detection outperforms other widely used novelty detectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.