Abstract

Free chlorine is widely used in industry as a bleaching and oxidizing agent. Its concentration is tightly monitored to avoid environmental contamination and deleterious human health effects. Here, we demonstrate a solid state chemiresistive sensor using graphene like carbon (GLC) to detect free chlorine in water. A 15-20 nm thick GLC layer on a PET substrate was modified with a redox-active aniline oligomer (phenyl-capped aniline tetramer, PCAT) to increase sensitivity, improve selectivity and impart fouling resistance. Both the bare GLC sensor and the PCAT-modified GLC sensor can detect free chlorine continuously and unlike previous chemiresistive sensors, do not require a reset. The PCAT-modified sensor showed a linear response with a slope of 13.89 (mg/L)-1 to free chlorine concentrations between 0.2 to 0.8 mg/L which is relevant for free chlorine monitoring for drinking water and waste water applications. The PCAT-modified GLC sensors were found to be selective and showed less than 0.5% change in curr...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.