Abstract
Background/Aims: This study aimed to investigate the precise mechanism and function of miR-16 in heat-denatured primary human dermal fibroblasts. Methods: Primary human dermal fibroblasts were separated from normal hu man skin samples. Under heat stress, the levels of miR-16 and heat shock protein 70 (HSP70) were detected in primary human dermal fibroblasts by quantitative real-time polymerase chain reaction (qRT-PCR). Next, heat-denatured cells were transfected with synthetic scrambled negative control (NC) RNA (NC group), miR-16 mimics, miR-16 inhibitor or miR-16 inhibitor accompanied by small in terfering RNA targeting HSP70, then the mRNA level of HSP70 was detected by qRT-PCR, cell proliferation was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-di phenyltetrazolium bromide (MTT) and AlamarBlue assay, cell migration was examined by Transwell assay and cell apoptosis was assessed by transferase dUTP (deoxyuridine triphosphate) nick end labeling (TUNEL) assay. In addition, cell apoptosis-related proteins, Bax and Bcl-2, were detected by Western blotting. Results: Heat stress significantly reduced miR-16 level and increased the mRNA level of HSP70 compared with untreated cells (p < 0.05). Overexpressed miR-16 reduced the mRNA level of HSP70, suppressed cell proliferation (p < 0.05 or p < 0.01), migration (p < 0.05), and promoted cell apoptosis (p < 0.001) compared with the NC group. Down-regulated miR-16 exerted an opposite effect on primary human dermal fibroblasts with heat-denaturation. Furthermore, effects of miR- 16 down-regulation on cell proliferation and migration were reversed by HSP70 silence. Conclusions: MiR-16 might have an inhibitory effect on cell proliferation and migration in heat-denatured human dermal fibroblasts, and HSP70 might be as sociated with the cell proliferation and migration as a target gene of miR-16.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.