Abstract

It is known that graphene is stronger than steel. It is characterized by extremely high values of the Young's modulus (up to 1 TPa), strength (~125 GPa) and thermal conductivity (~5000 W/(m · K)). Therefore, in this work it is used to obtain nano-bio composite materials aluminum–graphene using powder metallurgy methods, in particular high-energy ball grinding followed by vacuum sintering. Sintered composite materials were evaluated using modern methods of microstructure analysis, such as scanning electron microscopy with field emission (FE-SEM), energy dispersion spectroscopy (EDS), transmission electron microscopy (TEM) and Raman spectroscopy for qualitative and quantitative analysis of aluminum characteristics. According to the results of research, a homogeneous distribution of components is observed in the structure of the material over the given scan areas. The relative density of the composite after sintering is ≈97.5%. Data on the electrical conductivity of aluminum-graphene nano-structured bio-composite materials provide grounds for their use in bone engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.