Abstract
The coupling asynchronous acoustoelectric effects (CAAE) of the high-energy electropulsing treatment (EPT) technique and ultrasonic surface strengthening modification (USSM) are innovatively combined in improving the surface microhardness, corrosion behavior and biocompatibility of the pre-deformed titanium alloy strips. Experimental results show that EPT and USSM processes facilitate the surface grain refining and USSM brings in the micro-dimples on the materials surface, which is attributed to the atoms diffusion acceleration under EPT and severe surface plastic deformation under USSM. These microstructure changes can not only enhance the corrosion resistance in the acidic simulated body fluids and fluoridated acidic artificial saliva but also improve the biocompatibility of the titanium alloy strip materials. Moreover, the surface microhardness of the titanium alloy strips is enhanced to improve the wear resistance. Therefore, CAAE processing is a high-efficiency and energy-saving method for obtaining biomedical titanium alloys with superior anti-corrosion performance, microhardness and biocompatibility, which can be widely applied in dental implants and artificial joint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.